skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basov, Dmitri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Kagome vanadatesAV3Sb5display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV6Sn6, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The ARPES measurements show minimal changes to the electronic structure after the onset of CDW. However, STM quasiparticle interference (QPI) measurements show strong dispersing features related to the CDW ordering vectors. A plausible explanation is the presence of a strong momentum-dependent scattering potential peaked at the CDW wavevector, associated with the existence of competing CDW instabilities. Our STM results further indicate that the bands most affected by the CDW are near vHS, analogous to the case ofAV3Sb5despite very different CDW wavevectors. 
    more » « less
  2. NA (Ed.)
    Abstract The advent of 2D materials has revolutionized condensed matter physics and materials science, offering unprecedented opportunities to explore exotic physical phenomena, engineer novel functionalities, and address critical technological challenges across diverse fields. Over the past two decades, the exploration of 2D materials has expanded beyond graphene, encompassing a vast library of atomically thin crystals and their heterostructures. These materials exhibit extraordinary electronic, optical, thermal, mechanical, and chemical properties, and hold promise for breakthroughs in electronics, optoelectronics, quantum technologies, energy storage, catalysis, thermal management, filtration and separation, and beyond. Many exciting new physics and phenomena continue to emerge, while select 2D materials, such as graphene, h-BN, and the semiconducting transition metal dichalcogenides (TMDCs), are transitioning from laboratory-scale demonstrations to industrial applications. In this context, a holistic understanding of synthesis, structure-property relationships, integration, and performance optimization is essential. This roadmap reviews the multifaceted challenges and opportunities in 2D materials research, focusing on the synthesis, properties and applications of representative systems including graphene and its derivatives, TMDCs, MXenes as well as their heterostructures and moiré systems. 
    more » « less
  3. Nodal-line metals allow hyperbolic infrared waveguiding through the bulk with band structure–engineered loss reduction. 
    more » « less
  4. null (Ed.)